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The Effects of Test-Driven Development on
External Quality and Productivity:

A Meta-Analysis
Yahya Rafique and Vojislav B. Mišić, Senior Member, IEEE

Abstract—This paper provides a systematic meta-analysis of 27
studies that investigate the impact of Test-Driven Development
(TDD) on external code quality and productivity. The results
indicate that, in general, TDD has a small positive effect on
quality but little to no discernible effect on productivity. However,
subgroup analyses have found both the quality improvement and
the productivity drop to be much larger in industrial studies in
comparison with academic studies. A larger drop of productivity
was found in studies where the difference in test effort between
the TDD and the control group’s process was significant. A larger
improvement in quality was also found in the academic studies
when the difference in test effort is substantial, however, no
conclusion could be derived regarding the industrial studies due
to the lack of data. Finally, the influence of developer experience
and task size as moderator variables was investigated, and a
statistically significant positive correlation was found between
task size and the magnitude of the improvement in quality.

Index Terms—test-driven development, meta-analysis, code
quality, programmer productivity, agile software development.

I. INTRODUCTION

Test-Driven Development (TDD) is among the cornerstone
practices of the Extreme Programming (XP) development
process [1], [2], [3] and today is being widely adopted in
industry both as part of a large-scale adoption of XP and as a
stand-alone practice. TDD is commonly considered to be the
amalgamation of test-first development, in which unit tests are
written before the implementation code needed to pass those
tests [2], and refactoring, which includes restructuring a piece
of code that passes the tests in order to reduce its complexity
and improve its clarity, understandability, extendibility, and/or
maintainability [3]. TDD is often described with the so-called
‘red-green-refactor cycle’ [4] that consists of the following
steps:

1) Design and add a test.
2) Run all tests and see the new one fail (red).
3) Add enough implementation code to satisfy the new test.
4) Run all tests, repeat 3 if necessary until all tests pass

(green).
5) Occasionally refactor to improve code structure.
6) Run all tests after refactoring to ensure all tests pass.
The use of TDD is claimed to bring improvements in code

quality and productivity. However, research studies investigat-
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ing the effectiveness of TDD have failed to produce conclusive
results; in fact, all possible outcomes—positive, negative, and
neutral—have been reported for both quality and productivity
improvements obtained with TDD.

In this paper, we present a systematic review of 27 empirical
studies that have been published until February 2011. Our
review is limited to aggregating empirical findings on two,
arguably most important, outcome constructs: external code
quality (hereafter referred to as quality), expressed through
the number of defects per given code size unit (such as
lines of code or another suitable measure), and productivity,
expressed as the number of given units produced in a given
time frame (day or month) [5]. Studies which focus on other
outcome constructs such as internal quality or system design,
test coverage etc. have been excluded from the forthcoming
analysis, as will be explained below.

For each study we begin by analyzing the experimental
details. Then, based on these details, we discuss its perceived
rigor and the impact that differences in rigor might have had
on the studies’ results related to quality and productivity. After
that, we compute individual effect-sizes for each analyzed ex-
periment and combine them into a summary value using meta-
analytical techniques [6]. Lastly, we investigate the impact of
developer experience and task size as moderator variables.

While every effort was made to include all relevant studies,
this review is limited to studies that compare the performance
of TDD with that of a more conventional development process
in an empirical setting. In this process, we have tried to adhere
as much as possible to the general guidelines for reviews
in software engineering [7]. Furthermore, as a step towards
unifying research in the stream of agile development, the
layout of this paper is similar to that of a recent meta-analysis
on Pair Programming [8].

The paper is organized as follows. Section II provides a
description of the methodology used to gather studies, extract
the results and compute respective effect sizes, and synthesize
these effect sizes into a summary effect size for each construct.
Section III presents a description of the selected experiments
including an analysis on rigor. Results related to the external
quality construct are given in Section IV and results related to
the productivity construct are given in Section V. Section VI
analyzes the impact of two potential moderator variables
namely developer experience and task size. Threats to the
validity of the analysis are given in Section VII. Section VIII
provides a comparison between this review and three earlier
reviews. Finally, Section IX concludes by suggesting some
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promising directions for future research.

II. METHODOLOGY

The meta-analysis procedure has gained considerable atten-
tion in recent years as one of the effective ways to quanti-
tatively summarize and, if possible, interpret the results of a
collection of single studies on a given topic [9]. The analysis
proceeds through a number of distinct steps, as follows.

A. Study Identification and Selection

The identification and selection process proceeded in three
stages. First, we identified candidate studies by querying the
electronic databases of ACM Digital Library, IEEE Xplore,
SpringerLink, ISI Web of Science, and Scopus, using the
strings ‘Test Driven Development,’ ‘Test First Development,’
and ‘TDD’ to search through the Article Title, Abstract
and Keyword fields. The generated matches were filtered to
include only studies published in peer-reviewed journals or
proceedings from peer-reviewed conferences. The resulting
matches were pre-screened for relevance by reading through
the titles and abstracts but in some cases also going through
the introduction. All studies found to be relevant, as well as
those whose relevance was still unclear, were selected for a
more thorough analysis.

In the final stage, each of the authors read all of the
selected studies and individually compiled a list of studies
to be included in the review. The individual lists were then
compared and all differences were resolved through discus-
sion. Accordingly, a final list of studies was derived which
would form the subject of the upcoming meta-analysis.

B. Inclusion and exclusion criteria

Studies were included in this meta-analysis if they reported
results on one or more experiments in which the effectiveness
of TDD was compared with that of a more traditional (i.e.,
Test-Last) approach. Such experiments were designed with
subjects being divided into two or more groups, each of which
developed the same or similar products with at least one
group following either development approach. Studies were
only included if they reported quantitative data on at least one
of the investigated outcome constructs. The use of other agile
practices along with TDD was not considered as a limiting
factor; however, it is recognized as a threat to validity, as
explained in Section VII. We also note that the choice of
metrics used to measure the outcome constructs was not a
mandatory requirement for inclusion, as it was desirable to
incorporate as many relevant studies as possible.

During the selection process, a number of studies were
deemed unsuitable for inclusion in our review on account of
one or more of the following reasons:

• Some studies provided data obtained only with TDD,
possibly over multiple releases of the same product, but
without a control group.

• Some studies lacked a quantitative component, relying
instead on qualitative assessment or practitioner percep-
tions. Other studies focused on other outcome constructs

such as design quality or test coverage. However, such
measures are, at best, only indirect measures of quality
and there is no unified metric for either of them. (In par-
ticular, design quality is notoriously difficult to assess.)
Therefore, we decided against using design quality as an
outcome construct.

• In some cases, the development process did not fol-
low TDD with sufficient rigor: by applying TDD and
traditional approach to the same code, or by allowing
tests in the treatment group to be authored before or in
conjunction with code.

• Finally, some studies simply repeated the results of oth-
ers, either partially or in their entirety.

The list of studies that were excluded at the final stage of the
selection process, along with the reasons for their exclusion,
is given in Table I. We hasten to add that the exclusion does
not imply that these studies are without merit; it simply means
that the approach taken in these studies did not align well with
the goals of this analysis.

C. Data Extraction and Output Categories

The data extracted from the studies was classified into three
categories: Context, Rigor, and Outputs.

Attributes in the first category recorded contextual and
other high-level details regarding the studies, including the
authors of the study, the number of participants, and the
context—academia or industry—in which the experiment was
conducted.

Attributes in the Rigor category aimed to help assess the
extent of the applicability of a study’s results, according to
the criteria for study rigor described in [43]. These attributes
include the following:

• CT, which indicates the manner in which testing was done
by the control group – iteratively, i.e., interleaved with
coding, or after the target system was fully implemented
– as discussed in Section III-C;

• OA, indicating the other agile practices that were included
in the development processes;

• development and programming experience of the sub-
jects;

• task size of the final application (in LOC);
• duration of the project;
• information about process conformance in the target

group (i.e., adherence to the widely accepted principles
of TDD development);

• details of training received by the subjects prior to the
experiment.

The last category, Outputs, contained attributes for the
format in which results of a study were reported. for some
experiments, the authors reported the mean and standard
deviation of the results of each of the subject groups, and
perhaps a p-value, which allows tests of statistical significance
to be run. For others, the results included only the percentage
improvement for each group, or (in the worst case) just a
single value for an outcome construct, which was then simply
transformed into a percentage improvement value.
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TABLE I
STUDIES NOT INCLUDED IN THIS REVIEW.

Reason for exclusion Study
Lack of quantitative data. [10] [11] [12]
No control group. [13] [14] [15] [16]
Different outcome constructs considered. [17] [18] [19] [20] [21] [22] [23]
Lack of process conformance. [24]: tests are written ‘before or in conjunction with’ source code

[25]: focus on automating ‘component-level’ (i.e., higher level) tests
[26]: both the TDD and the traditional approach are applied to the same source code

Repeats the results of another study. [27]: same as one of the experiments in [28] (included)
[29]: same experiment as [30] (included)
[31]: same experiment as [32] (included)
[33]: same as one of the experiments in [28] (included)
[34]: same experiment as [35] (included)
[36]: same experiment as [15] (excluded)
[37]: same as two of the experiments in [38] (included)
[39]: same experiment as [40] (included)
[41]: same as one of the experiments in [42] (included)

Our original intention was to compute a standardized effect
size for each of the analyzed experiments, and then synthe-
size individual experiment effect sizes into a summary effect
size using one of the meta-analytical statistical models, as
explained below. However, this requires that the mean and
standard deviation for each subject group are available –
which, unfortunately, was not the case with all studies. As
our goal was to include as many studies as possible, we
decided to split the analysis into two sub-analyses, dubbed
Standardized and Unstandardized. For the former, standardized
effect sizes were calculated when possible and subsequently
combined using the meta analytical models explained below.
For the latter, an unstandardized effect size was calculated
for each analyzed experiment; the individual effect sizes were
simply averaged to obtain the summary effect size. Therefore,
standardized and unstandardized analyses differ in their choice
of effect size measure and the manner in which individual
effect sizes are synthesized into a summary value, both of
which are explained in detail below.

D. Standardized analysis

All standardized effect sizes in this paper were computed
using the Comprehensive Meta Analysis V2 tool by BioStat
Inc [44]. The Hedges’ g statistic was chosen as the standard-
ized effect size measure for the analysis, as it exhibits better
characteristics for smaller samples when adjusted for small
sample bias in comparison with other parametric measures
such as Cohen’s d and Glass’ ∆ [8]. The Hedges’ g statistic
is calculated as

g =
mt −mc

spooled
(1)

where mt and mc refer to the mean values reported for the
treatment and control groups, respectively, and spooled refers
to the pooled standard deviation which is calculated from the
standard deviation in the treatment group st and the control
group sc as

spooled =

√
(nt − 1)s2t + (nc − 1)s2c

(nt − 1) + (nc − 1)
(2)

Variables nt and nc denote the number of subjects in the
treatment and control groups, respectively. The variable ntotal
is the sum of nt and nc and is given in the ‘subjects’ column
in Tables II and III.

Small sample bias is accounted for by multiplying the g
statistic by a correction factor of

cf = 1 − 3

4(ntotal − 2) − 1
(3)

According to [45], effect sizes with a value in the range 0.0-
0.37, 0.38-1.0, and 1.0 and above, can be considered as small,
medium and large sized effects, respectively. Positive effect
sizes represent an improvement as a result of applying the
treatment whereas negative values imply a detrimental impact.

Individual experiment effect sizes were combined to obtain
a summary effect size using two popular statistical models,
namely the fixed-effects model and the random-effects model
[46]. The principal difference between these two models is the
underlying assumption. The fixed-effects model assumes that
only one true effect size underlies all individual experiment
effect sizes and differences amongst them are solely due to
sampling error, i.e., as the sample size increases the effect size
is likely to converge to the one true value. On the other hand,
the random-effects model is premised on the assumption that
differences amongst individual effect sizes are the result of the
sampling error as well as of other variables and factors that
have not yet been taken into account. Consequently, the effect
size may vary from study to study, and is distributed about
some mean effect size value. The two models, thus, attempt
to answer slightly different questions: the fixed-effects model
aims to derive the one true effect size, while the random-
effects models aim to find the mean of the curve along which
all possible effect sizes are distributed.

However, both models follow a similar procedure to derive
the summary effect size. First, for each experiment i (in the
k experiments) they assign a weight wi. Then, the summary
effect size Ts is computed as the weighted average of the
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individual experiment effect sizes Ti:

Ts =

k∑
i=1

wiTi

/
k∑

i=1

wi (4)

The weights wi are calculated as the inverse of the experi-
ment’s error variance. Because of different model assumptions,
this error variance is calculated in different ways for fixed- and
random-effects models [46]:

wif =
1

vi

wir =
1

vi + τ2

(5)

In the fixed-effects model, the only source of variance is
the sampling process, hence the weights wif are computed as
the inverse of just the within-experiment variance vi. In the
random-effects model, other factors could also add on to the
overall variance. Consequently, the weights wir are computed
as the inverse of the sum of the within-experiment variance
vi and a constant τ2 representing the between-experiment
variance, which is calculated using the DerSimonian and Laird
formula [8]:

τ2 =


Q− df

C
, if Q > df

0, if Q ≤ df
(6)

The degrees of freedom df is equal to the number of indi-
vidual experiment effect sizes, minus one. The Q statistic is
the weighted sum of the squares of the deviations of each
experiment’s effect size from the summary effect size:

df = k − 1

Q =

k∑
i=1

wif (Ti − Tsf )2
(7)

In order to obtain Q, the weights wif and the summary effect
size Tsf must be computed beforehand, following the fixed-
effects model. Finally, C is a scaling factor used to ensure
that τ2 is reported in the same metric as the within-experiment
variance vi:

C =

k∑
i=1

wi −
k∑

i=1

w2
i

/
k∑

i=1

wi (8)

The precision Vsf with which the summary effect size Tsf in
the fixed-effects model estimates the one true effect size is

Vsf = 1

/
k∑

i=1

wi (9)

The choice of the model is made on the basis of factors
such as knowledge of the environment, previous empirical
observations and findings, and the like, and some assistance is
provided by the modeling process itself. In particular, the Q
statistic from (7) is consistent with the level of heterogeneity
[8], hence a significant value of Q should support the rejection
of the homogeneity hypothesis and the adoption of a random-
effects model. We have also computed the I2 statistic:

I2 =
Q− df

Q
× 100% (10)

which is used to quantify the degree of true heterogeneity, i.e.,
the extent to which the total variance is the result of between-
experiment variance [9]. I2 values of 33.3 and 66.6% delimit
low, moderate, and high level of heterogeneity.

E. Unstandardized analysis

Percentage improvement was chosen as the unstandardized
effect size measure, according to the formula

∆x =
xt − xc
xc

× 100% (11)

The exact values for xt and xc depend on the design of the
experiment. All of the analyzed studies had adopted one of two
designs for their experiments which will be explained next.
The difference in design is the primary reason why results
were reported differently as explained above in the description
of the Outputs category of attributes.

In the first design, each group of subjects jointly developed
a system. For each investigated outcome construct, the authors
had reported a single value for each subject group and/or went
a step further and computed the percentage improvement. If
only the percentage improvement was reported then it was
accepted without change, but if the authors had reported actual
group values, the percentage improvement was recalculated
using (11), with the variables xt and xc set to the values
reported for the treatment and control groups, respectively.

In the second design, all subjects in a group individually
developed the same system. In this case, for each investigated
outcome construct the study authors had either reported indi-
vidual values for each subject in each group and/or they had
reported the mean and the standard deviation for each group.
In this design the means, or medians when the means were
not given, for the subject groups were used to set the variables
xt and xc.

Consequently, only a single observable data point or effect
size was recorded for each experiment regardless of the experi-
mental design; however, the method to calculate the effect size,
as indicated above, was dependent on the experimental design.
Using a single effect size per experiment was the case not only
in the unstandardized analysis but also in the standardized
analysis. Exceptions where results of two experiments were
combined to give a single experiment effect size are explained
below.

The summary effect size was then calculated as the mean
of the individual effect sizes.

III. DESCRIPTION OF EXPERIMENTS

A. Listing of Experiments

For this review a total of 37 experiments were extracted
from 25 studies which were selected based on the criteria
in Section II-B. Typically, studies had reported on only a
single experiment; in this case the effect size realized in the
experiment was calculated as explained above. However, some
studies reported results on multiple experiments and these
were treated differently as is explained next.

For studies that reported results on up to three distinct
experiments, an individual effect size was calculated for each
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experiment and consequently, the study contributed more than
one effect size value towards the forthcoming synthesis pro-
cess. This was the case with the studies by Gupta & Jalote [47],
Madeyski [48] and Nagappan et al. [38] which contributed
two, two and three effect size values, respectively.

For studies that reported results on more than three experi-
ments, namely those by Janzen [42] and Pančur & Ciglarič
[49], an effect size was not calculated for an individual
experiment but for the combined or average result of a group
of experiments instead. The limit of three experiments was
intended to restrict the number of effect sizes contributed
by a study in order to avoid publication bias. However, for
studies reporting results of up to three experiments, individual
experiment effect sizes were calculated with the underlying
intent of maximizing the number of effect sizes included
in the synthesis process and thus benefiting from a more
accurate summary effect size value. In other words, the limit
of three experiments is simply an attempt to strike a balance
between maximizing the number of effect sizes and avoiding
a publication bias towards any study.

A personalized grouping strategy was chosen for each of
the two studies in which the experiments were to be grouped.
In the study by Janzen [42], E1(i.e. Experiment #1) and E5
were grouped as the same development task was undertaken
in each both of these experiments. Also, in the same study, E3
and E4 were grouped as they had a very similar development
task according to the author. Having reported the results of five
experiments, after the grouping process, the study by Janzen
[42] contributed three effect size values to the forthcoming
synthesis process. In the study by Pančur & Ciglarič [49],
E1 and E3 were grouped and so were E2 and E4 as the
task size amongst the experiments in each pair was the
same or relatively similar, but the difference across pairs was
significant. Consequently, this study contributed two effect size
values to the synthesis process.

Details of the academic and industrial experiments analyzed
in this review are given in Tables II and III, respectively.
The experiments are labeled according to the authors of the
corresponding report, with the suffix ‘Ei,’ where i = 1, 2, . . .,
added where the report contained data on multiple experi-
ments. Experiments reported in the two studies [42], [49],
which were grouped together to meet the publication bias
constraint, are described as a single entry per group.

B. Metrics Used

The choice of metrics used to operationalize the outcome
constructs differed amongst the experiments. According to [8],
the use of different metrics results in the experiments analyzing
slightly different aspects of the outcome constructs. As such,
any metric conveys but one out of many possible viewpoints
regarding the impact on these outcome constructs. Therefore,
the choice of a specific metric might be among the reasons
that lead to differences in individual experiment effect sizes.
Unfortunately, the lack of widely accepted standard in this
area is likely to exist for the foreseeable future.

The quality construct was operationalized using one or more
of the following metrics:

• number of defects/bugs/trouble reports/defect cases that
were found,

• defects per KLOC/defect density,
• number/percentage of acceptance/black-box/external tests

passed,
• number/percentage of unit tests passed, and
• quality mark given by client.
The productivity construct was operationalized using one or

more of the following metrics:
• development time/person hours spent/task time,
• total LOC divided by total effort, or the number of LOC

per hour,
• total non-commented LOC,
• number of delivered stories per unit effort (or imple-

mented user stories per hour),
• delivered non-commented LOC per unit development

effort (or effort per ideal programming hour), and
• hours per feature/development effort per LOC.

C. Assessment of Study Rigor

Studies differed in their definitions of the control group’s
process. As noted in the ‘CT’ column in Tables II and III,
for the control group studies were found to either opt for a
Waterfall-based testing process (labeled ’W’), in which testing
is done after all functionality has been implemented, in effect
mimicking the Waterfall development process; or the Iterative
Test-Last (ITL) development approach [49] (’I’), in which unit
testing is interleaved with coding as in TDD, but the unit
tests are written after the implementation code. As a direct
implication of the testing process chosen, studies were found
to differ in the amount of test effort expended by the control
group. In particular, control group subjects adopting the ITL
approach were generally found to spend more time testing than
their counterparts employing the Waterfall approach. This can
primarily be seen as the result of the ITL constraint of writing
tests after every little snippet of functionality which in effect
obligated developers to spend some time testing after short
cycles of development, thus avoiding pitfalls of Waterfall-
based development where testing, in the end, might be ignored
due to reasons such as tiredness, close deadlines etc.
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TABLE II: Details of academic studies.

experiment subjects CTa OAb experience size
(LOC)

duration conformance training other details

Desai et al. [50] 166c W junior UG 10 hrsd Lab materials provided in-
structions on TDD, pre-
pared by a person with lim-
ited TDD experience and no
curriculum development ex-
perience.

Experiment comprised
seven projects dealing
with writing shape classes
like Triangle, Rectangle
etc. Introductory Java
course.

Edwards [32] 118 W senior UG 12
weekse

Students were given 30 min-
utes of classroom training
on TDD and testing.

Task: four assignments.
Comparative Languages
course.

Erdogmus et al.
[5]

24 I intermediate
UG

272f 32 hrsg Post-survey and tests
used to judge confor-
mance for each sub-
ject.

Students trained in Test-
First and Test-Last tech-
niques.

Task: bowling score
keeper. Introductory Java
course.

Flohr and
Schneider [51]

18 I PP,
OSC

G 23 hrsh Process conformance
was poor.

A 2 hour lecture on TDD
and testing. More training
was needed.

Task: library for a system
aimed to provide graph-
ical description of com-
munications flows in soft-
ware processes.

George E1 [28] 138 W PP junior,
senior UG

200 1.25 hrs Students were taught TDD
and JUnit. Two homework
assignments completed with
TDD and JUnit before ex-
periment.

Task: bowling score
keeper. Software
Engineering class.

Gupta & Jalote
E1 [47]

22 W G,
senior UG

1600 31.5 hrs In the post-survey,
70% of TDD group
and 88% of Traditional
group said they
adhered to their
approach.

Subjects given necessary
training to use TDD for
developing Java programs;
however, in the post-survey
47% of TDD group stated
they need more training.

Student course registra-
tion system. Advanced
OO analysis and model-
ing course.

Gupta & Jalote
[47] E2

22 W G,
senior UG

1600 34.5 hrs see above see above Simple ATM system,
same course as above.

Huang & Hol-
combe [52]

39 I XP intermediate
G

1175 110 hrs Project Manager was
appointed to ensure
conformance.

10 hours of advanced train-
ing of TDD and other XP
practices.

Different projects resem-
bling realistic tasks. Soft-
ware engineering course.

Janzen E1, E5
[42]

E1:
10,
E5: 9

I E1: inter-
mediate &
senior UG,
E5: G

E1: 650
E5: 760i

E1: 40
hrs E2:
97 hrs

Lecture slides on automated
testing and TDD and sample
programs. 1.5 - 2 hr training
session.

Task: HTML pretty print
system. E1: Undergrad-
uate Software Engineer-
ing Course. E5: Gradu-
ate Software Engineering
Course.

Janzen E2 [42] 28j I junior UG 6 weeksk see above Task: Data Structures for
modeling points and poly-
gons. CS1 Programming
Course.

Janzen E3, E4
[42]

E3:
36,
E4:
54

I junior UG 9 weeksl see above Task in E3: Application
for tracking drivers and
traffic citation informa-
tion. Task in E4: Simi-
lar to E3 but using airline
flight information. Both
E3, E4 done in CS2 Pro-
gramming Course.

Kaufmann &
Janzen [53]

8 Wm UG Both groups did not
write sufficient amount
of tests

Training given on Graphics
APIs utilization

Task: Small games in
Java using Graphics APIs.
Elective Software Studio
course.

Madeyski E1
[48]

56 I intermediate,
senior UG

12 hrs The course introduced Java
using TDD and pair pro-
gramming as the key XP
practices. Sample programs
were also included.

Finance accounting
system. Introductory Java
course.

Madeyski E2
[48]

132 I PP see above see
above

see above see above

Muller & Hag-
ner [54]

19 W G The course in which
experiment was conducted
covered pair programming,
TDD, refactoring and
planning techniques.

Main class of a graph li-
brary. Second course on
XP.
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TABLE II: Details of academic studies (cont’d from previous page).

experiment subjects CTa OAb experience size
(LOC)

duration conformance training other details

Pančur et al.
[55]

38 I PP senior UG 2 assignments taken over
a period of less than three
weeks.

Pančur &
Ciglarič E1, E3
[49]

E1:
19,
E3:
16

I PP senior UG E1: 10
user
stories
(us), E3:
13 us

26 hrs Conformance
monitored using
Process Log Eclipse
Plug-in.

Lectures contained ‘several’
practical examples on unit
testing, JUnit, refactoring,
agile design, frequent mis-
takes etc. Lectures followed
by three short assignments
which were assessed to pro-
vide subjects with individu-
alized comments and warn-
ings.

E1: Part of Series 1 E3:
Part of Series 2

Pančur &
Ciglarič E2, E4
[49]

E2:
23,
E4:
32

I senior UG 2 user
stories

4 hrs see above E2: Part of Series 1 E4:
Part of Series 2

Rahman [56] 150 W junior &
intermediate
UG

Treatment group did
detailed design.

20-25 minute presentation
on experimental goals and
Test-before-Coding (TBC)
method. Afterwards also did
a similar problem together.

Experiment conducted
over two years in
five introductory
programming courses.

Vu et al. [57] 14 W G,
senior UG

3070i 147.7
hrsi

Test-First and Test-Last
methodologies introduced
through lectures and student
presentations.

Software engineering
course.

Xu & Li [58] 8 W intermediate,
senior UG

344 4 hrs One of the authors
acted as a mentor
who monitored the
programming process
for all the individuals.

Short training sessions in
which students were given
reading materials and asked
to implement a simple pro-
gram to get used to of pro-
cedure and tools.

Task: bowling score
keeper. Software
engineering course.

Yenduri &
Perkins [59]

18 W senior UG Students were given re-
quired user manuals and a
short description of form-
ing test cases. They were
also trained in applying both
TDD and traditional ap-
proaches.

Software engineering
course.

Zhang et al.
[60]

8 W G, UGn June to
Aug. 2005

Working attendance man-
agement system.

Acronyms - E#: Experiment #, UG: Undergraduate, G: Graduate, PP: Pair Programming, OSC: On-site Customer, XP: Extreme Programming(represents all practices within
the XP methodology)

a CT: testing approach in the control group. ’W’ denotes Waterfall (no test written before all the code has been finished; ’I’ denote ITL (Iterative Test-Last), testing interleaved
with coding but with test written after the code to be tested.

b OA: presence (’Y’ or ’N’) of other agile practices, such as pair programming.
c Assuming the 2007 class and 2008 class had the same number of subjects.
d Average duration per project determined by combining hours spent by both control and treatment groups.
e Four assignments each of which takes 2 to 3 weeks to complete.
f Estimated using average of George & Williams study and Xu & Li’s study since all three worked on implementing same problem.
g 4 hrs per week in a 8 week course.
h Average based on individual subject attempts.
i Average of treatment and control groups.
j Number of students who took post-experiment survey.
k Two assignments with each lasting 2 to 3 weeks.
l Each experiment consisted of three assignments with each assignment lasting 2 to 3 weeks.
m Experiment included in ITL subgroup in forthcoming analysis because test effort was similar to TDD group.
n Subjects referred to simply as students without highlighting seniority.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, JANUARY 201Z 8

TABLE III: Details of industrial studies.

experiment subjects CTa OAb experience
(years)

size
(LOC)

duration conformance training other details

Canfora et al.
[40]

28 W 5 10 hrs 3 hr training session in-
cluded a seminar on TDD
and lab exercises to increase
familiarity with the practice.

TextAnalyzer system.

Dogša & Batič
[61]

36 I PP 5 57,169c 20,834
hrsc

For both groups the
test suite automatically
ran every 15 minutes
and sent emails on
failed tests. With TF
group no evidence of
even any ‘little-design-
up-front.’

‘Intensive’ training on TF
approach by solving ‘care-
fully selected real-world’
problems for three weeks.

Task: A simulator for a
node in a IP multime-
dia subsystem architec-
ture designed by the wire-
less standards body 3GPP.

George E2 [28] 24 W PP 200 5 hrsd Task: Bowling Score
Keeper application.
Groups in three
companies.

Geras et al. [35] 14 I 0.5 to 6 ‘small’ Subjects followed pre-
viously prepared pro-
cess scripts.

Task: Project Time Entry
System.

Lui & Chan
[62]

W -e Custom software for man-
ufacturing plants in less
developed areas in China.

Nagappan et al.
E1 [38]

8 W 6 to 10f 6000 3840 hrsg Treatment group did
detailed design.

Networking common li-
brary.

Nagappan et al.
E2 [38]

20 W 6 to 10f 26000 7360 hrsg see above Web Service application.

Nagappan et al.
E3 [38]h

12 W 10+f 155200 3200 hrsg see above Part of the development of
an IDE tool.

Slyngstad et al.
[63]

100 W 14671i Five releases of an
internally reusable
framework. Developers
distributed worldwide,
mostly in Norway and
Sweden.

Williams et al.
[30]

14 W 64000 Dedicated TDD coach was
assigned as technical leader.

Subjects developed a re-
lease of a device driver.

Acronyms - E#: Experiment #, PP: Pair Programming
a CT: testing approach in the control group. ’W’ denotes Waterfall (no test written before all the code has been finished; ’I’ denote ITL (Iterative Test-Last), testing interleaved

with coding but with test written after the code to be tested.
b OA: presence (’Y’ or ’N’) of other agile practices, such as pair programming.
c Average of Test-Last and both Test-First teams.
d Approximated from box plots and average of TDD and control groups.
e Study states that developers were inexperienced.
f Majority of the developers had this experience level.
g Assuming they worked 160 hrs per month.
h Only three of the four experiments mentioned in the paper are included; the fourth one is already included in [30].
i Average size of a release.
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Studies also differed in their definitions of the treatment
group’s process i.e. TDD, and subsequently in their definitions
of the treatment group’s process, including the granularity
of the tests, importance given to refactoring, frequency with
which tests were run and other minor details.

Studies also differed in the use (or lack) of other agile
practices such as pair programming; this information is in-
dicated in the ‘OA’ column in Tables II and III. The presence
of other agile practices might confound the effects of TDD,
which is why our initial screening process aimed at identifying
studies that explicitly focused on examining the effectiveness
of TDD alone, as explained in Section II-B. Still, our meta-
analysis did include some of the studies that used other agile
practices, usually as part of both the treatment and the control
groups’ process definitions so that their impact on results can
be minimized.

Considerable variation in the experience level of the subjects
was observed. In academic studies, subjects ranged from
junior undergraduate to graduate students; in industrial studies,
reported (industrial programming) experience ranged from
1 to over 10 years. Intuitively, to be able to accurately
compare TDD with a more conventional process, subjects
should possess the technical skill set required to proficiently
employ either process. It is worth noting that TDD requires
a broader set of skills: in testing and refactoring as well as
in programming, but unfortunately, only a few of the studies
reported relevant data. Hence the degree to which the subjects
met the skill requirements, in particular those of TDD, is
uncertain. The effect of experience when applying TDD is
studied in more detail in Section VI.

In most of the studies subjects had little or no prior exposure
to the TDD practice, and as such, the proficiency with which
they used TDD would have been highly dependent on the
training they received prior to the experiment. The reported
extent of the training ranged from the distribution of short
supplementary handouts to dedicated lecture sessions on TDD;
in some cases, a dedicated coach was made available to mentor
and/or overlook the entire development process. Nevertheless,
it is plausible that some of the subjects did not fully grasp
the essence of TDD due to the inherent difficulty of the
technique. Indeed, multiple studies that coupled experiments
with a practitioners’ post-perception survey reported that a
significant percentage of the subjects had faced difficulty in
applying the technique. Previous empirical research on TDD
has reported that it could take developers up to two weeks
to fully adapt to the TDD mindset [18]. This is a point of
concern, especially in experiments of short duration.

Studies also differed in the size of the development task
and/or duration of the experiment. Amongst the data available,
task size was found to range from 200 LOC to 155,200 LOC,
and duration was found to range from 1.25 hours to 20,834
hours. Roughly a third of the combined entries of Tables II
and III had a task size greater than 2000 LOC, while just
over half of the entries had a duration of 10 hours or more.
Experiments where the development task is relatively small in
size and/or short in duration are less favourable when assessing
the usefulness of TDD since benefits might not be visible [64].
The relationship between the size of the development task and

the magnitude of the improvement is further investigated in
Section VI.

Finally, although subjects in a group were instructed to
utilize a particular development process, few studies provide
explicit details on actual conformance levels or on any steps
that were taken to ensure a higher degree of conformance. This
is important since the validity of the experiment is impaired
if the developers even temporarily fall back to traditional
approach, which might happen on account of time constraints,
ease of technique, and other factors.

IV. RESULTS ON EXTERNAL QUALITY

A. Aggregate Analyses

1) Standardized Analysis: Eleven standardized effect sizes
were calculated for twelve experiments in which a total of 743
subjects took part. The number of experiments differs from the
number of effect sizes because the results of two experiments
in [49] were combined into a single experiment effect size
measure, as explained in Section III-A.

A summary of the standardized analysis on quality is
shown in Table IV. The summary effect size is 0.106 and
-0.0101 under the fixed-effects and random-effects models,
respectively. In both cases, the summary effect size indicates a
very small to negligible impact on quality. Tests of significance
confirm this: assuming a 0.05 significance level, the p-values
for both models indicate that there is no significant difference
in quality between the two approaches. Heterogeneity, as
shown by I2, is high in the fixed-effects model. In view of
the many differences amongst the studies as highlighted in
Section III-C and the high heterogeneity observed under the
fixed-effects model, the random-effects model seems to be
better suited for the analysis. Consequently, for the remaining
portion of this section and the forthcoming discussion, the
quality construct is discussed in light of the random-effects
model, while the data obtained with the fixed-effects model is
solely provided for completeness purposes.

To facilitate comparison amongst individual experiment
effect sizes, as well as between the individual effect sizes and
the summary value, standardized effect-size analysis is often
complemented with a forest plot and a one-study removed
plot. In the former, the size of the square reflects the weight
assigned to the experiment(s) corresponding to the square,
under the random-effects model, and the length of the line
passing through the square indicates the confidence interval
surrounding the effect size for the experiment. In the latter,
the summary effect size is shown with each study excluded;
it thus serves as a measure for assessing the sensitivity of the
analysis to each study. The forest plot and one-study removed
plot under the fixed-effects model are shown in Figs. 1 and 2,
respectively; for completeness, weight assignment under the
fixed-effects model is shown in the rightmost row of Fig. 1.

The data in Fig. 1 shows that, according to the classification
scheme from [45], only four of the eleven individual exper-
iment effect sizes are positive, with three out of these four

1For standardized analyses, the effect size is reported as an absolute
value, so as to distinguish it from the values obtained in the corresponding
unstandardized analyses.
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TABLE IV
QUALITY: SUMMARY OF STANDARDIZED ANALYSIS.

level type # of Effect Sizes Model Hedges g 95% CI p Q I2 df

0 OVERALL 11 fixed-effects 0.106 -0.056 . . 0.267 0.201 62.621 84.031 10
random-effects -0.010 -0.454 . . 0.433 0.964 9.768 0.000 10

1 Academic 10 fixed-effects 0.064 -0.114 . . 0.241 0.482 61.366 85.334 9
random-effects -0.049 -0.561 . . 0.464 0.852 8.057 0.000 9

Industrial 1 fixed-effects 0.309 -0.082 . . 0.701 0.121 0.000 0.000 0
random-effects 0.309 -0.082 . . 0.701 0.029 0.000 0.000 0

Waterfall 6 fixed-effects 0.529 0.310 . . 0.748 0.000 29.640 83.131 5
random-effects 0.301 -0.328 . . 0.930 0.348 7.030 28.876 5

ITL 5 fixed-effects -0.403 -0.643 . . -0.163 0.001 1.313 0.000 4
random-effects -0.403 -0.643 . . -0.163 0.001 1.313 0.000 4

Agile-Inclusive 2 fixed-effects -0.385 -0.685 . . -0.084 0.012 0.373 0.000 1
random-effects -0.385 -0.685 . . -0.084 0.012 0.373 0.000 1

Agile-Exclusive 9 fixed-effects 0.305 0.114 . . 0.497 0.002 47.855 83.283 8
random-effects 0.073 -0.451 . . 0.598 0.785 8.323 3.885 8

2 Academic+Waterfall 5 fixed-effects 0.629 0.365 . . 0.893 0.000 27.878 85.652 4
random-effects 0.285 -0.617 . . 1.188 0.536 4.337 7.774 4

Academic+ITL 5 fixed-effects -0.403 -0.643 . . -0.163 0.001 1.313 0.000 4
random-effects -0.403 -0.643 . . -0.163 0.001 1.313 0.000 4

Industrial+Waterfall 1 fixed-effects 0.309 -0.082 . . 0.701 0.121 0.000 0.000 0
random-effects 0.309 -0.082 . . 0.701 0.029 0.000 0.000 0

Industrial+ITL 0 n/a

 

Experiment    Hedges's g and 95% CI Hedges's  95% CI  
g p-Value Relative Weight 

Desai et al.  [50]  0.907 0.588 1.225 0.000 11.26 
Madeyski E2 [48] -0.437 -0.781 -0.093 0.013 11.15 
Slyngstad et al. [63] 0.309 -0.082 0.701 0.121 10.93 
Madeyski E1 [48]  -0.595 -1.123 -0.067 0.027 10.22 
Huang & Holcombe [52] -0.217 -0.834 0.400 0.491 9.70 
Erdogmus et al. [5] -0.152 -0.928 0.625 0.702 8.74 
Gupta & Jalote E2 [47] -0.580 -1.402 0.242 0.167 8.47  
Muller & Hagner [54] -1.039 -1.961 -0.118 0.027 7.88 
Gupta & Jalote E1 [47]  1.579 0.650 2.509 0.001 7.83 
Pancur & Ciglaric E2,E4 [49] -0.342 -1.314 0.630 0.490 7.59 
Xu & Li [58] 0.495 -0.734 1.724 0.430 6.23 

-0.010 -0.454 0.433 0.964 
-4.00 -2.00 0.00 2.00 4.00 

25.81  
22.09   
17.06  
9.37 
6.86 
4.33 
3.87 
3.08 
3.02 
2.76 
1.73 

Random    Fixed    

Overall – Fixed Effects   0.106 -0.056 0.267  0.201 
Overall – Random Effects   

favours traditional favours TDD       

Fig. 1. Forest Plot on Quality under Random-Effects Model.

 

Hedges's g and 95% CI  95% CI  Point p-Value 

Desai et al. [50]  -0.138 -0.516 0.240  0.475 
Madeyski E2 [48]  0.043 -0.435 0.520 0.861 
Slyngstad et al. [63]  -0.049 -0.561 0.464 0.852 
Madeyski E1 [48]  0.056 -0.411 0.524 0.814 
Huang & Holcombe [52]  0.012 -0.472 0.495 0.963 
Erdogmus et al. [5]  0.003 -0.474 0.480 0.990 
Gupta & Jalote E2 [47]  0.042 -0.425 0.509 0.859 
Muller & Hagner [54]  0.077 -0.374 0.528 0.737 
Gupta & Jalote E1 [47]  -0.142 -0.578 0.294 0.523 
Pancur & Ciglaric E2,E4 [49]  0.017 -0.452 0.486 0.943 
Xu & Li [58]  -0.044 -0.509 0.420 0.852 

-0.010 -0.454 0.433 0.964 
-4.00 -2.00 0.00 2.00 4.00 

Experiment  

Overall – Random Effects   

with study removed 

favours traditional favours TDD       

Fig. 2. One-Study Removed Plot on Quality under Random-Effects model.

having a medium or higher magnitude; the other seven effect
sizes are negative, and five of these are of a medium or higher
magnitude. Despite more than half of the effect sizes being
of medium or higher magnitude in either direction, p-values
for half of the experiments indicate that there is no significant
difference between the two approaches. As a side note, it can

also be seen that, as a result of adopting the random-effects
model, the weights are more evenly distributed in comparison
with the fixed-effects model where three experiments would
have accounted for more than half the weight of the analysis.

In the one-study removed plot in Fig. 2 the values next
to each study under the column ‘Point’ show the Hedges g
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Fig. 3. Distribution of Improvement in quality.

TABLE V
QUALITY: SUMMARY OF UNSTANDARDIZED ANALYSIS.

level type # of effect sizes % improvement
0 OVERALL 24 24
1 Academic 16 10

Industrial 8 52
Waterfall 14 28
ITL 10 19
Agile-Inclusive 6 4
Agile-Exclusive 18 30

2 Academic+Waterfall 10 24
Academic+ITL 6 -13
Industrial+Waterfall 4 39
Industrial+ITL 4 65

summary effect size if the respective study is excluded from
the synthesis process. Comparing the values in this column
with the overall value in the last row, it can be seen that
the largest difference exists in the case of two experiments
namely those by Desai et al. [50] and Gupta & Jalote E1
[47]. Therefore, the analysis is most sensitive to, or is most
effected by, the inclusion of these two experiments. Also, with
the exclusion of the sole industrial study by Slyngstad et al.
[63], the one-study removed plot shows that the overall effect
size of the ten academic studies is approximately zero. A more
detailed comparison between the effect sizes from academic
and industrial studies is presented in later on in the subgroup
analyses.

2) Unstandardized Analysis: For the unstandardized anal-
ysis, 24 individual effect sizes were computed for 25 experi-

TABLE VI
QUALITY: EFFECT SIZES.

experiment % improvement
Madeyski E2 [48] -35
Madeyski E1 [48] -27
Gupta & Jalote E2 [47] -7
Pančur & Ciglarič E2, E4 [49] -6
Pančur et al. [55] -3
Huang & Holcombe [52] -3
Erdogmus et al. [5] -2
Desai et al. [50] 3
Gupta & Jalote E1 [47] 16
George E1 [28] 16
George E2 [28] 18
Rahman [56] 24
Vu et al. [57] 28
Zhang et al. [60] 28
Dogša & Batič [61] 33
Slyngstad et al. [63] 33
Yenduri & Perkins [59] 35
Williams et al [30] 39
Edwards [32] 46
Xu & Li [58] 49
Nagappan et al. E1 [38] 62
Lui & Chan [62] 67
Nagappan et al. E2 [38] 76
Nagappan et al. E3 [38] 90

ments which employed a total of 1222 subjects, not counting
[62] which did not report the number of subjects.

A summary of the unstandardized analysis on quality is
given in Table V and the individual effect sizes are given in
Table VI. The mean value of the improvement is 24%2. In
comparison with the standardized analysis, the summary value
for the unstandardized analysis illustrates a more prominent
impact on quality which is largely the result of including more
industrial studies into the analysis. 16 out of the 24 calculated
effect sizes show an improvement above 10%, while six show
an improvement in the range -10% to 10%. It is worth noting
that three of the four highest effect sizes are associated with the
experiments conducted at Microsoft [38]. Only two effect sizes
show an improvement below -10% (effectively, a deterioration
of quality under TDD), both corresponding to experiments
from [48].

B. Subgroup Analyses at Level 1

The aggregate analysis indicates that TDD has a small
positive effect on quality, which is more prominent in the
unstandardized analysis due to the inclusion of a number
of industrial studies. However, the validity of this summary
effect, and possible generalization about the impact of TDD
from it, can be questioned due to the differences in the
experiments analyzed. Better conclusions might be reached
if the impact of TDD was assessed through experiments
with relatively similar conditions, which was the rationale for
conducting the forthcoming level 1 and 2 analyses that focus

2For unstandardized analyses, the effect size is reported as a percentage, so
as to distinguish it from the values obtained in the corresponding standardized
analyses.
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on the comparative analysis of subgroups of the experiment
set.

a) Academic vs. Industrial: This subgrouping strategy is
based on the context in which the related experiments were
conducted. The summary values for each of these subgroups
in the standardized analysis and other synthesis-related details
are given in Table IV. As only one of the effect sizes refers
to an experiment conducted in an industrial context, only the
experiments from the Academic subgroup lend themselves to
the standardized analysis, which results in the summary effect
size of -0.049. Nevertheless, it is interesting to note that the
sole industrial experiment by Slyngstad et al. [63] reported a
contrasting effect size of 0.309. Due to only a single industrial
experiment being included in the standardized analysis, the
Level 1 summary value of the Academic subgroup is not
very different from the Level 0 summary value of -0.010.
The p-value of this subgroup under the random-effects model
indicates that there is no difference in quality amongst the two
development approaches.

In this case, the unstandardized analysis may be more useful
since it incorporates a larger number of industrial studies. The
improvement is calculated for 16 effect sizes from academic
experiments and eight from industrial experiments. Under
the unstandardized analysis, the experiment effect sizes are
shown in Table VI whereas the summary values of the two
subgroups are shown in Table V. The histogram resulting from
this subgrouping strategy is shown in Fig. 3(a). Interestingly
enough, the summary effect size changes from the Level 0
value of 24%: it drops to 10% for the academic subgroup
(where mixed results are observed), but rises to 52% for the
industrial subgroup, with a minimum improvement of 18%.

b) Waterfall vs. ITL: This subgrouping strategy is based
on the testing process utilized by the control group in the
experiments: Waterfall or ITL. The summary values for each
of these subgroups in the standardized analysis and other
synthesis-related details are given in Table IV. In the stan-
dardized analysis, the summary effect size rises to 0.301
for the Waterfall subgroup, which corresponds to a small
positive improvement according to the classification scheme
from [45]. However, the p-value indicates that this result is not
statistically significant. The corresponding summary effect for
the ITL subgroup drops to -0.403, indicating a medium drop
in quality which is statistically significant, unlike the result of
the Waterfall subgroup. It is worth noting that all effect sizes
in the ITL subgroup indicate a negative effect of TDD.

The unstandardized analysis includes 14 effect sizes from
Waterfall-based experiments and ten from ITL-based experi-
ments. The summary values of the two subgroups are shown
in Table V and a histogram based on this subgrouping strategy
is shown in Fig. 3(b). As shown, the summary value rises to
28% for the Waterfall subgroup, but drops to 19% for the ITL
subgroup. Nevertheless, the histogram shows that we can’t
simply conclude that TDD performs better than Waterfall,
but worse than ITL. As can be seen, the results relating to
the ITL subgroup are rather sharply divided, with about two-
thirds of the effect sizes being below those in the Waterfall
subgroup, and the remaining third being higher than those in
the Waterfall subgroup. A deeper analysis of this observation

is conducted as part of the Level 2 unstandardized subgroup
analyses below.

c) Agile-Inclusive vs. Agile-Exclusive: This subgrouping
strategy is based on the presence of other agile practices
(Agile-Inclusive) or lack thereof (Agile-Exclusive).

The summary values for each of these subgroups in the
standardized analysis and other synthesis-related details are
given in Table IV. In the standardized analysis, only two
of the analyzed experiments belong in the Agile-Inclusive
subgroup. As a result, not much can be derived from using
this subgrouping strategy in the standardized analysis. In the
Agile-Inclusive subgroup, a summary effect size of -0.385 is
computed for the two experiments. The summary value of
the Agile-Exclusive subgroup is 0.073, but this result is not
statistically significant, similar to the corresponding value in
Level 0 standardized analysis.

In the unstandardized analysis, six effect sizes refer to
experiments that are part of the Agile-Inclusive subgroup.
The summary values of the two subgroups are shown in
Table V. As shown, the Level 0 summary value drops to 4%
for this subgroup, but rises slightly to 30% for the Agile-
Exclusive subgroup, exhibiting a pattern similar to that of the
standardized analysis.

C. Subgroup analyzes at Level 2

In an attempt to explain the variation in effect sizes within
a subgroup and, perhaps, strengthen conclusions obtained
through subgrouping the effect sizes at Level 1, we subdi-
vided the effect sizes in each of the Academic and Industrial
subgroups at Level 1 according to the use of a Waterfall- or
ITL-based development process by the control group.

d) Academic+Waterfall vs. Academic+ITL: In this sub-
section we examine the impact of dividing the effect sizes in
the Academic subgroup.

The summary values for each of these Level 2 subgroups
in the standardized analysis are given in Table IV.In the
standardized analysis the summary effect size value increases
to 0.285 for the Academic+Waterfall subgroup, but decrease
to -0.403 for the Academic+ITL subgroup. The conclusion
is thus similar to that obtained at Level 1, Waterfall-versus-
ITL, standardized analysis reported above – in both cases
the performance of TDD is superior in the Waterfall-based
subgroup. At the same time, similar to the Level 1 standardized
analysis, only the result pertaining to the Academic+ITL
subgroup is statistically significant.

The summary values for each of these Level 2 subgroups
in the unstandardized analysis are given in Table V. Similar
behavior is observed in the unstandardized analysis, where the
summary value for the Academic+Waterfall subgroup rises to
24% whereas that for the Academic+ITL subgroup drops to
-13%.

e) Industrial+Waterfall vs. Industrial+ITL: Standard-
ized analysis makes no sense for this subgrouping at Level 2,
as there is only one effect size related to Industrial experiments
in this analysis.

The summary values for each of these Level 2 subgroups
in the unstandardized analysis are given in Table V. In the
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unstandardized analysis, the Level 1 summary value of the
industrial subgroup drops for the Waterfall subgroup, but rises
for the ITL subgroup: both the summary values of 39 and 65%
are in sharp contrast to the result of the Level 2 analysis of
the Academic subgroup. This result may be used to provide
additional insight into the observation made with respect to the
histogram in Fig. 3(b). Namely, it turns out that the two-thirds
of the effect sizes in the ITL subgroup that were lower than the
Waterfall subgroup at Level 1, originate from the experiments
conducted in an academic context; the remaining one-third of
the effect sizes that were higher than those from the Waterfall
subgroup originate from the experiments conducted in an
industrial context.

D. Discussion

Let us now try to explain where differences between the
effect sizes of the subgroups obtained under the different
subgrouping strategies come from.

f) Academic vs. Industrial: In the unstandardized anal-
ysis, a clear difference was observed in the summary effect
sizes for the Academic and Industrial subgroups, with the latter
resulting in larger improvement in quality. These differences
are likely caused by the differences in developer experience
and task size, as can be ascertained from the information
provided in Tables II and III.

With regard to developer experience, it is quite plausible
that industrial developers, who can be reasonably expected
to have much higher experience level than the academic ones,
are likely to achieve higher TDD conformance. In this manner,
industrial developers can utilize the TDD technique to its full
potential, and thus be able to obtain net quality improvement
reported in industrial experiments.

With regard to task size, empirical research on TDD has
found that the benefits of TDD might not be immediately
apparent and may require some time before progressively
becoming visible [64]. As the projects that were implemented
in the academic studies were generally much smaller in size
than those implemented in the industrial studies, the resulting
improvements in quality simply have not had enough time to
materialize, thus resulting in summary effect sizes that were
comparatively smaller than those in the industrial studies, or
even non-existent in some cases.

g) Waterfall vs. ITL: Both standardized and unstandard-
ized analyses found noticeable differences in effect sizes
between the Waterfall and ITL subgroups. To explain these
differences, let us note first that the primary difference between
the Waterfall and ITL subgroups lies in the amount and dis-
tribution of test effort during the control group’s development
process, as explained above.

The standardized analysis, primarily illustrating results from
Academic studies, found that the larger improvements of effect
sizes were generally obtained in the Waterfall subgroup, while
all of the effect sizes were negative in the ITL subgroup. This
difference can be explained by the difference in test effort,
but only in part. Namely, it is highly plausible that a large
difference in test effort (as reported in the Waterfall subgroup)
led to larger quality improvements observed. However, when

the test effort in one group is roughly equivalent to that in
the other group, as is the case with the experiments in the
Academic+ITL subgroup, the summary effect size actually
indicates a drop in quality. Obviously other interacting forces
or variables exist that are not immediately known from the
results of this analysis.

The unstandardized analysis found that the effect sizes in
the Waterfall subgroup were higher than about two-thirds of
effect sizes in the ITL subgroup, but lower than the remaining
third. This difference cannot be justified solely by the test
effort. In particular, effect sizes related to experiments in the
Industrial+ITL subgroup are generally higher despite having
much smaller or negligible improvements in test effort, which
is counter-intuitive.

To reduce the number of the confounding variables, we
have conducted Level 2 comparison of Industrial+Waterfall
vs. Industrial+ITL subgroups, only to find that effect sizes
were still generally higher in the ITL subgroup. Upon careful
inspection of the latter subgroup, it was noticed that three
(out of four) effect sizes originate from the same study [38].
All three experiments employed a modified version of TDD
which included an initial detailed design phase which may
well have led to larger improvements in quality. If the three
experiments are excluded, the sole remaining experiment in
the Industrial+ITL group [61] shows improvement of 33%,
much closer to the summary effect size of 39% for the
Industrial+Waterfall subgroup. This finding may be inter-
preted to mean that at large task sizes, as are those encountered
in industry, an improvement in quality is less dependent of the
level of test effort as it is on the actual development process
used. However, this result cannot be confirmed due to the small
number of studies involved, and should be verified by future
empirical research.

h) Agile-Inclusive vs. Agile-Exclusive: The unstandard-
ized analysis shows that inclusion of other agile practices, as
exhibited by the effect sizes of the Agile-Inclusive subgroup,
has a detrimental impact on quality. However, this drop may
well be due to the influence of variables such as experience,
task size and use of an ITL-based development process in the
control group, that overshadowed the influence of other agile
practices. The observation that two-thirds of the experiments in
the Agile-Inclusive subgroup were conducted in an academic
context, and also that two-thirds of the experiments employed
an ITL-based development process for the control group, may
be interpreted as an indication of this. Still, no conclusive
evidence can be identified regarding the impact of other agile
practices on the quality obtained through TDD.

V. RESULTS ON PRODUCTIVITY

A. Aggregate Analyses

1) Standardized Analysis: A summary of the standardized
analysis on the productivity construct is given in Table VII. A
total of ten effect sizes were computed for twelve experiments
which employed a total of 265 subjects. Summary effect
sizes of 0.064 and 0.048 were computed under the fixed-
effects and random-effects models, respectively; both values
indicate a very small to negligible impact on productivity.
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TABLE VII
PRODUCTIVITY: SUMMARY OF STANDARDIZED ANALYSIS.

level type # of Effect Sizes Model Hedges g 95% CI p Q I2 df

0 OVERALL 10 fixed-effects 0.064 -0.195 . . 0.324 0.628 41.104 78.104 9
random-effects 0.048 -0.522 . . 0.618 0.869 11.912 24.448 9

1 Academic 9 fixed-effects 0.212 -0.063 . . 0.487 0.131 31.181 74.343 8
random-effects 0.187 -0.376 . . 0.749 0.515 11.253 28.906 8

Industrial 1 fixed-effects -1.111 -1.887 . . -0.335 0.005 0.000 0.000 0
random-effects -1.111 -1.887 . . -0.335 0.005 0.000 0.000 0

Waterfall 5 fixed-effects -0.536 -0.954 . . -0.119 0.012 18.988 78.934 4
random-effects -0.436 -1.385 . . 0.514 0.369 6.196 35.447 4

ITL 5 fixed-effects 0.443 0.112 . . 0.774 0.009 9.127 56.174 4
random-effects 0.465 -0.043 . . 0.974 0.073 4.005 0.136 4

Agile Inclusive 3 fixed-effects 0.620 0.208 . . 1.033 0.003 6.872 70.897 2
random-effects 0.702 -0.089 . . 1.493 0.082 1.862 0.000 2

Agile Exclusive 7 fixed-effects -0.299 -0.633 . . 0.034 0.079 22.694 73.561 6
random-effects -0.273 -0.942 . . 0.395 0.423 8.718 31.178 6

2 Academic+Waterfall 4 fixed-effects -0.303 -0.798 . . 0.192 0.230 16.025 81.279 3
random-effects -0.230 -1.440 . . 0.979 0.709 4.616 35.007 3

Academic+ITL 5 fixed-effects 0.443 0.112 . . 0.774 0.009 9.127 56.174 4
random-effects 0.465 -0.043 . . 0.974 0.073 4.005 0.136 4

Industrial+Waterfall 1 fixed-effects -1.111 -1.887 . . -0.335 0.005 0.000 0.000 0
random-effects -1.111 -1.887 . . -0.335 0.005 0.000 0.000 0

Industrial+ITL 0 n/a

 

Pancur & Ciglaric E1,E3 [49]  -0.017 -0.650 0.616 0.958 
Huang & Holcombe [52] 1.027 0.371 1.683 0.002 
Canfora et al. [40]   -1.111 -1.887 -0.335 0.005 
Erdogmus et al. [5]  0.263 -0.516 1.042 0.508 
Pancur & Ciglaric E2,E4 [49]  -0.025 -0.817 0.767 0.951 
Gupta & Jalote E2 [47]  -0.001 -0.805 0.803 0.999 
Gupta & Jalote E1 [47]  -0.531 -1.350 0.288 0.204 
Flohr & Schneider [51] 1.228 0.256 2.200 0.013 
Vu et al. [57] -2.052 -3.327 -0.777 0.002 
Xu & Li [58]  1.879 0.362 3.396 0.015 

0.048 -0.522 0.618 0.869 
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Overall – Random Effects   

Overall – Fixed Effects   0.064 -0.195 0.323 0.628 

Fig. 4. Forest Plot on Productivity under Random-Effects Model.

 

Pancur & Ciglaric E1,E3 [49] 0.058 -0.603 0.719 0.864 
Huang & Holcombe [52] -0.079 -0.655 0.497 0.788 
Canfora et al. [40]  0.187 -0.376 0.749 0.515 
Erdogmus et al. [5] 0.024 -0.618 0.665 0.942 
Pancur & Ciglaric E2,E4 [49]  0.058 -0.584 0.699 0.860 
Gupta & Jalote E2 [47] 0.055 -0.586 0.696 0.867 
Gupta & Jalote E1 [47]  0.116 -0.506 0.738 0.715 
Flohr & Schneider [51]  -0.077 -0.659 0.505 0.796 
Vu et al. [57] 0.218 -0.308 0.744 0.417 
Xu & Li [58] -0.083 -0.647 0.481 0.774 

0.048 -0.522 0.618 0.869 
-4.00  -2.00 0.00 2.00 4.00 

Overall – Random Effects   

Experiment    Hedges's g and 95% CI Point  95% CI  p-Value 

favours traditional favours TDD       

with study removed 

Fig. 5. One-Study Removed Plot on Productivity under Random-Effects model.

A similar result is found by examining the p-values which
indicate that there is no significant difference in productivity
between the two development approaches. However, this result
should not be generalized as there are many variables that

could affect TDD performance, as discussed in Section III-C.
Heterogeneity, as shown by the value of I2, is high in the
fixed-effects model. In view of the differences in rigor and
the high heterogeneity level, similar to the quality construct, a
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Fig. 6. Distribution of Improvement in Productivity.

random-effects model is adopted for the standardized analysis.
The forest plot for the analysis on productivity under the

random-effects model is shown in Fig. 4. As can be seen,
four of the effect sizes are positive, with three values being
of medium to high magnitude according to the classification
in [45]. The remaining six values are negative; three of these
have a magnitude of medium or higher. However, p-values
indicate that there is no significant difference in productivity
in five out of ten experiment.

The one-study removed plot for the analysis on productivity
is shown in Fig. 5. The summary effect size is most sensitive
to the experiments by Vu et al. [57], Canfora et al. [40] and
Gupta & Jalote E1 [47].

2) Unstandardized Analysis: Unstandardized analysis in-
cluded 23 effect sizes from 27 experiments that employed a
total of 564 subjects. As in the case of the quality construct,
unstandardized analysis differs from the standardized one in
that the results from a much larger number of Industrial experi-
ments are included. A summary of the unstandardized analysis
on productivity is given in Table VIII, while the individual
effect sizes are given in Table IX. The mean improvement is
4%, which supports the finding of the standardized analysis,
namely, that the impact of TDD on productivity is very
small to negligible. Eleven effect sizes are greater than 10%,
while eight of them are lower than -10%; the remaining
four individual effect sizes lie in the range -10% to 10%.
Interestingly enough, two of the experiments reported in [38]
reported significant drops in productivity.

TABLE VIII
PRODUCTIVITY: SUMMARY OF UNSTANDARDIZED ANALYSIS.

level type # of effect sizes % improvement
0 OVERALL 23 4
1 Academic 15 19

Industrial 8 -22
Waterfall 9 -6
ITL 14 11
Agile-Inclusive 5 12
Agile-Exclusive 18 2

2 Academic+waterfall 6 7
Academic+ITL 9 27
Industrial+waterfall 3 -30
Industrial+ITL 5 -17

TABLE IX
PRODUCTIVITY: EFFECT SIZES.

experiment % improvement
Canfora et al. [40] -57
Xu & Li [58] -49
Nagappan et al. E1 [38] -30
Nagappan et al. E3 [38] -23
Williams et al. [30] -18
Dogša & Batič [61] -16
George E2 [28] -16
Nagappan et al. E2 [38] -15
Pančur & Ciglarič E2, E4 [49] -5
Pančur & Ciglarič E1, E3 [49] -1
Geras et al. [35] 0
Zhang et al. [60] 10
Janzen E2 [42] 10.5
Janzen E3, E4 [42] 13
Gupta & Jalote E2 [47] 14
Vu et al. [57] 19
Gupta & Jalote E1 [47] 20
Flohr & Schneider [51] 21
Yenduri & Perkins [59] 25
Erdogmus et al. [5] 28
Janzen E1, E5 [42] 50
Kaufmann & Janzen [53] 50
Huang & Holcombe [52] 72

B. Subgroup Analyses at Level 1

We have also undertaken analysis by subgroups at Level
1, using a classification analogous to that reported in Sec-
tion IV-B.

a) Academic vs. Industrial: Similar to the standardized
analysis on quality, only one industrial experiment could be
included in the standardized analysis on productivity namely
the experiment by Canfora et al. Hence the results analyzed
in the standardized analysis primarily portray the performance
of TDD within the academic context. The summary effect size
value thus increases from 0.048 at Level 0, to 0.187 at Level
1. Like its counterpart at Level 0, the summary result of the
Academic subgroup is not statistically significant.

Unstandardized analysis includes 15 effect sizes from aca-
demic experiments and eight from industrial ones, as shown
in the histogram of the improvement distribution in Fig. 6(a).
The summary improvement rises to 19% for the academic
subgroup, with twelve out of 15 results being above 10% –
but drops to -22% for the industrial subgroup in which seven
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out of eight effect sizes were below -10%.
b) Waterfall vs. ITL: This subgrouping strategy results

in more balanced subgroup sizes in the standardized analysis.
The summary effect size drops to -0.436 for the Waterfall
subgroup, but rises to 0.465 for the ITL subgroup; the latter
results are statistically significant.

In the unstandardized analysis the Waterfall and ITL sub-
groups included 9 and 14 effect sizes, respectively, with
summary values of -6% for the Waterfall subgroup and 11%
for the ITL subgroup (the corresponding Level 0 value was
4%). The histogram of the improvement distribution, shown
in Fig. 6(b), illustrates that the ITL subgroup had better
productivity in general, despite the fact that some studies using
ITL performed worse than some of the Waterfall-based ones.

c) Agile-Inclusive vs. Agile-Exclusive: In the standard-
ized analysis, only three effect sizes refer to experiments that
are part of the Agile-Inclusive subgroup; the other, Agile-
Exclusive subgroup included seven effect sizes. The summary
effect size increased substantially to 0.702 for the Agile-
Inclusive subgroup (which is statistically significant) and de-
creased to -0.273 for the Agile-Exclusive subgroup. However,
small subgroup sizes make these results hard to generalize.

In the unstandardized analysis, the Agile-Inclusive and
Agile-Exclusive subgroups included five and 18 effect sizes,
respectively, with summary value of 12% for the Agile-
Inclusive subgroup and 2% for the Agile-Exclusive subgroup.
We note that the increase in summary value upon inclusion of
other agile practices has been observed in both the standard-
ized and unstandardized analyses of quality.

C. Subgroup Analyses at Level 2
We have also undertaken analysis by subgroups at Level

2, using a classification analogous to that reported in Sec-
tion IV-C.

d) Academic+Waterfall vs. Academic+ITL: Since the
standardized analysis includes data from a single industrial
experiment, the result of this Level 2 analysis is expected to
be very similar to the result of the Level 1 analysis under the
Waterfall vs. ITL subgrouping strategy. Indeed, the resulting
summary value was -0.303 for the Academic+Waterfall sub-
group and 0.443 for the Academic+ITL subgroup. Since the
same experiments comprise the ITL-based subgroup in both
the Level 1 and 2 analyses, the result of the ITL subgroup
in the Level 2 analysis is also statistically significant. In the
Level 2 unstandardized analysis, the summary value drops
to 7% for the Academic+Waterfall subgroup and rises to
27% for the Academic+ITL subgroup. Both standardized and
unstandardized analyses indicate that the use of ITL seems to
cause an improvement in the summary effect size.

e) Industrial+Waterfall vs. Industrial+ITL: At Level 2
no results are available from the standardized analysis as there
is a single industrial experiment that can be analyzed.

In the unstandardized analysis, we obtained summary values
of -30% for the Industrial+Waterfall subgroup and -17% for
the Industrial+ITL subgroup. This result is similar to that
observed in the Level 2 analysis of the Academic subgroup,
where the use of ITL has led to an increase in summary effect
size.

The results of the last two Level 2 analyses indicate that
in both academic and industrial experiments, larger improve-
ments in productivity were noted for the ITL-based subgroups,
despite the apparent interleaving of the effect sizes of individ-
ual experiments.

D. Discussion

With the results above, we can attempt to rationalize the
differences in the effect sizes of subgroups under the various
subgrouping strategies. But before that, it is worth noting that
two contradictory perspectives were described in the literature
regarding the impact of TDD on productivity, as summarized
by Turhan et al. [65]. One viewpoint suggests that TDD results
in improved productivity by improving external code quality,
internal code quality, and test quality, all of which lead to
lower code generation rate, faster rate of defect detection
and fixing, and easier and faster maintenance. The opposing
viewpoint is that the TDD incurs increased testing overhead
which degrades productivity. Let us now discuss the results of
subgroup analyses and try to determine which of these two
opposing viewpoints, if any, can justify our results.

f) Academic vs. Industrial: The unstandardized analysis
demonstrates a noticeable difference between the effect sizes
of the Academic and Industrial subgroups, the former being
generally higher than the latter. Moreover, none of the exper-
iments in the industrial subgroup indicated an improvement
in productivity. As mentioned in the discussion on quality in
Section IV-D, the two subgroups substantially differ in terms
of size and task developer experience, which may well lead to
the differences between the effect sizes in the two subgroups.

The impact of task size on productivity, if any, cannot be
inferred from the details available on the experiments included
in this analysis.

As for developer experience, many among the academic
studies have reported problems with process conformance in
the treatment groups, as a significant number of subjects were
unable to grasp the TDD style, test the code properly, and
respect other practices that comprise TDD. It may be argued
that the developers with longer experience are able to achieve
higher levels of process conformance and thus pay more
attention to, and spend more time in, TDD-specific activities
such as unit testing, refactoring, and the like, which increases
project duration and decreases productivity. On the other
hand, unstandardized analysis on productivity unequivocally
shows that larger drops in productivity occur in the industrial
experiments, even though these same experiments report larger
quality improvements.

Together, these two observations seems to support the view-
point that proper application of TDD incurs a larger overhead
and thus degrades productivity.

g) Waterfall vs. ITL: Both standardized and unstandard-
ized analyses found larger productivity improvements in the
ITL subgroup than in the Waterfall subgroup. Moreover, our
Level 2 analysis has shown that (a) all of the effect sizes from
industrial experiments were smaller than all of the academic
experiments, and (b) in each of these two sets of experiments,
the ITL-based experiments experienced higher productivity
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improvements than the Waterfall-based ones. The primary
difference between ITL- and Waterfall-based process is the
amount of test effort, as explained in Section III-C. In scenar-
ios where the difference in test effort (when switching to TDD)
was not substantial, i.e., in the ITL subgroup, productivity
improvements were typically higher than in the scenarios from
the Waterfall subgroup where the difference in test effort was
significant.

Therefore, we may conclude that most, if not all, of the
difference in effect sizes is likely due to the difference in test
effort. This conclusion again supports the viewpoint that the
application of TDD incurs a larger testing overhead and thus
results in a drop in productivity. At the same time, the switch
from test-last (as in ITL) to test-first (as in TDD) development
did improve productivity, most likely on account of reduced
defect generation and improved defect detection and correction
offered by TDD, as stipulated by the other viewpoint.

h) Agile-Inclusive vs. Agile-Exclusive: Unstandardized
analysis has shown that larger productivity improvements
were experienced in the experiments which incorporated agile
practices other than TDD, primarily pair programming. One
possible explanation for this result could be that TDD leads to
good synergy with other agile practices and, thus, including
them improves the performance of TDD-based development.
However, an alternate justification for our results is also pos-
sible. Namely, all but one of the studies in the Agile-Inclusive
subgroup employed a conventional but ITL-based development
process. Therefore, the productivity improvements tentatively
associated with other agile practices might, in fact, be due not
to other agile practices, but to other factors as yet unaccounted
for in our analysis. (One such factor could be the lower defect
generation and improved defect detection and correction rates
noted in the previous paragraph.) In light of these claims, any
judgements on the impact of other agile practices are reserved
until future research.

VI. MODERATOR VARIABLES

The above discussion on the outcome constructs have shown
that differences in effect sizes of subgroups are most likely due
to other variables. Two among the most important variables
are developer experience and task size, as highlighted in the
discussions on the Academic vs. Industrial subgrouping. In this
Section we take a closer look at the moderating effects of these
variables, beginning with a brief summary of previous research
that documents the impact of these variables on performance
of TDD-based development process.
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TABLE X
EMPIRICAL STUDIES INVESTIGATING THE INFLUENCE OF DEVELOPER EXPERIENCE.

subjects/pairs experience (years) code duration Quality Result Productivity Result
study type # context general

software
dev.

Java/C/C++ testing TDD size
(LOC)

(hours)

Müller and
Höffer [66]
(individual)

Novice 11 XP course 04 6 2.4 NSE a NSE b

450 4-5 hrs 35% more of the
programs by NG
passed AT.

EG took approx.
31% less time
than NG (SS).

c

Expert 7 Multiple
Sources

7.0 6.2 4.3 (JUnit) 3.4

Höfer and
Philipp [67]
(pairs)

Novice 06 12 XP course 06 4.8 2 NSE d -
450 4-5 hrs -

EG took approx.
37% more time
than NG’08 (SS).
EG took approx.
36% more time
than NG’06.

c

Novice 08 12 XP course 08 6.4 4 NSE e NSE f

Expert 12 company (see
text)

7.8 7.2 5.5 (JUnit) 3.0

Madeyski [68]
(pairs)

2nd year 39
Programming
in Java
Course

- - -
27
user
stories

12 hrs - -
3rd year 27
4th year 4
MSc 70

Note: All numerical values including those for experience, code size and duration are averages for all subjects in the respective group.
Acronyms - NG: Novice Group, EG: Expert Group, NSE: No Significant Experience, AT: Acceptance Tests, SS: Statistically Significant

a 4 subjects had prior exposure to JUnit.
b 1 subjects had prior exposure to TDD.
c Percentage calculated using median values approximated from a box-plot.
d 1 subject had prior exposure to JUnit.
e 3 subjects had prior exposure to JUnit.
f 3 subjects had prior exposure to TDD.
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A. Developer experience

Although the success of TDD is dependent on skills in a
number of different areas, including programming, testing,
design, refactoring and thinking in a TDD style [2], [3],
programming experience and exposure to TDD are the only
variables that have been explicitly studied. Table X summa-
rizes existing studies that relate the impact of experience on
TDD.

Müller and Höfer [66] compared the performance of final-
year undergraduate students from an XP course with that of
professionals with at least five years of industrial programming
experience. The latter group were also more experienced
with regard to use of automated testing tools and exposure
to TDD. All subjects individually developed a Java-based
elevator control system following the TDD approach until
they felt they were done; their programs were then evaluated
using previously prepared acceptance tests. The subjects in
the professional group were found to finish the task in shorter
time, and this result was statistically significant. The difference
was attributed to faster coding speed and higher level of
programming experience. However, a larger proportion of
programs prepared by the students passed the acceptance tests,
but this result was not statistically significant. This, somewhat
unexpected result was attributed to the professionals’ percep-
tion of the acceptance testing process as a regular adjunct to
testing and, thus, being assigned lower priority. On the other
hand, subjects in the students group viewed the acceptance
tests as a more formal assessment criteria, and thus ensured,
to a greater degree, that the implemented functionality was in
working order prior to submission.

Müller and Höfer’s experiment was repeated by Höfer and
Philipp [67] using the same experimental task but with two
distinct student/novice groups in which subjects worked in
pairs. Subjects in the novice groups were students that took the
same XP course as [66] in later years, with one group being
selected from the 2006 class and the other from the 2008
class. Students in the novice groups differed in programming
experience, but they had similar levels of expertise in TDD and
the JUnit tool. The professional group was mostly comprised
from employees of a company specializing in agile software
development and consulting. Interestingly, results from this
experiment visibly differed from that of the previous one. In
particular, subjects in the professional group generally took
longer to complete the program than those in either of the
novice groups. The difference between the expert group and
the novice 2008 group was statistically significant, unlike the
one between the professional and the novice 2006 group,
and the one between the two novice groups. The extra time
utilized by the professional group was attributed to longer
time spent refactoring code, a finding that was also statistically
significant. However, results for quality were not reported in
this experiment.

Madeyski [68] analyzed the impact of experience on quality
using data from a previously conducted experiment [48]. This
experiment has a much larger subject group than the previous
two and it aimed to compare the performance of pairs applying
the classic testing approach with those applying the TDD

TABLE XI
CORRELATION OF TASK SIZE WITH QUALITY AND PRODUCTIVITY.

correlation coefficient # of Effect Sizes p-value
quality 0.65 14 0.028
productivity -0.29 13 0.562

approach. The subjects’ experience level was determined by
the academic year in which they were enrolled, but little other
information about the subjects’ experience and skill levels was
collected. The results indicated a small correlation between
programmer experience and quality in the group that used
TDD, but this observation was not statistically significant.

As these studies report conflicting results, no definite con-
clusion can be drawn. Only one of the studies reported
experience adequately and had an expert group that plausibly
applied TDD to its full potential [67], and its results indicate
that productivity was lower for the expert group. This finding is
aligned with our findings on productivity in the Academic vs.
Industrial subgrouping, where industrial developers (arguably
analogous to the expert group in the said study) were found
to perform at lower productivity level than the student ones.

We did attempt to correlate effect size data with the experi-
ence level data, but the classification of studies into subgroups
with ‘low’, ‘medium’ and ‘high’ experience level could not be
done in a reliable manner due to the lack of data on experience
level in the various area such as testing, refactoring etc.

B. Task size

We have also analyzed the relationship between task size
and the magnitude of the improvement brought about by
TDD; fourteen data points (effect sizes and respective task
sizes) could be obtained from the analysis on quality, and
thirteen from the analysis on productivity. Fig. 7 shows the
scatterplots of percentage improvement measures for both
outcome constructs vs. task size; for clarity, the x-axis uses
a logarithmic scale. A visible trend can be identified in
the plot for quality, unlike the plot for productivity where
such trend can’t be easily observed; the relationships of both
quality and productivity improvements with task size appear
to be logarithmic in nature. Table XI shows the Spearman
correlation coefficients between the percentage improvement
and the log transform of task size; as can be seen, the task size
was found to be correlated with quality, and this correlation
is statistically significant.

Interestingly enough, no previous empirical research could
be found that related task size with performance of a TDD-
based development process. However, two studies did hint on
the possible influence of this variable: when recalling experi-
ences on the adoption of agile practices in industry, Hodgetts
[64] claimed that the implementation of TDD took several two-
week XP cycles to show significant results. Also, in a study
conducted in an academic environment, Erdogmus et al. [5]
explained the lack of improvement in quality by reasoning
that when the programming task is small, ad hoc testing
strategies, visually inspecting code, and other conventional
practices could perhaps substitute the benefits brought about
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(b) Improvement in productivity.

Fig. 7. Scatterplot showing the relationship of task size to improvements in
quality and productivity.

by TDD, thus making the advantages of TDD more or less
transparent.

C. Other Variables

In both previous Sections, some variation amongst effect
sizes within subgroups still exist, even upon subgrouping
at Level 2. This might be due to the influence of other
variables, most notably task complexity. Higher values of task
complexity might have a detrimental impact on the magnitude
of the quality improvement, as was observed in [47] where
two experiments were carried out with the same subjects and
similar task size, but with different task complexity levels.
On the other hand, higher levels of task complexity may
make TDD more difficult to apply, time- and effort-wise, thus
leading to a negative overall impact on productivity. However,
more detailed investigation into this issue is needed before any
definitive conclusions can be drawn.

VII. THREATS TO VALIDITY

The major obstacle in conducting this analysis was the
lack of data available for computing the standardized effect
size in each experiment. Although we partially overcame this
obstacle by using an unstandardized effect size measure, all
unstandardized measures within the context of this research
suffer from two principal disadvantages.

First, since the metrics used to operationalize the outcome
constructs differ from study to study, as explained in Sec-
tion III-B, differences in these metrics as well as differences
in scale may affect the accuracy of the comparison between
the results of two studies. It is worth noting that this threat
exists in the context of standardized analysis as well.

Second, using means or medians while ignoring the standard
deviation within the results of subjects in a group, might
result in an incorrect assessment of the actual effect size when
comparing the results of two groups a study, hence leading to
conclusions that are misleading or exaggerated.

The selection of a parametric effect size measure such as
the Hedges’ g is based on the assumption that the outcome
construct being investigated is normally distributed. If this is
not the case, then a non-parametric measure should be used.
However, this is not a feasible option as such measures can
only be used for characterizing data, but not for relating it
back to a population [8]. Due to the lack of availability of raw
data that could point to the right distribution, and considering
that means are meaningful indicators for both of the outcome
constructs, a parametric measure was adopted as the best
option.

As noted in [43], many among the studies on TDD consider
only the initial development phase when calculating productiv-
ity while ignoring any long-term effects on maintenance. Thus
it is difficult to get a comprehensive understanding of the long-
term impact of TDD on productivity from our analysis, and
the conclusions derived should be considered to apply solely
to productivity during the initial development phase.

As studies differed in their adherence to the TDD process,
it is difficult to estimate the accuracy with which the summary
effect sizes calculated in our analysis provide a reflection of
the true effectiveness of TDD.

Lastly, publication bias [8] is another factor that should be
considered when a meta-analysis is undertaken but the data in
the studies included here—esp. those in the industrial group—
are insufficient to make a meaningful analysis of this kind.

VIII. COMPARISON WITH EARLIER REVIEWS

Our work is not the first to attempt to summarize research
on the efficacy of TDD. In fact, Siniaalto [69], Kollanus
[70], and Turhan et al. [65] published review studies with
the same goal. Table XII shows the findings of these review
studies and lists the studies from which the original data on
external quality and productivity outcome constructs (studies
that reported on internal and design quality are omitted). (We
also note that Shull et al. [43] summarized the findings of
[65] and contrasted its results with expert opinion.) A brief
summary of the methodology and results of the three earlier
reviews is presented next.
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TABLE XII
COMPARISON WITH PREVIOUS REVIEWS.

review year studies included External Quality Productivity
Siniaalto [69] 2006 [5] [13] [14] [15] [25] overall: improvement overall: inconclusive

[29] [30] [32] [33] [35] academic: inconclusive academic: inconclusive
[36] [55] [53] [54] [62] semi-industrial: inconclusive semi-industrial: inconclusive

industrial: inconclusive industrial: improvement
Kollanus [70] 2010 [5] [16] [22] [24] [26] [27] [29] overall :improvement overall: degradation

[30] [31] [32] [33] [35] [37] [38] controlled experiment: no difference controlled experiment: inconclusive
[39] [40] [41] [47] [48] [55] [50] case studies: improvement case studies: degradation
[51] [52] [54] [56] [57] [58] [60] other: improvement other: improvement
[62] [63] [71]

Turhan et al. [65] 2010 [5] [17] [21] [26] [28] [30] [34] overall: improvement overall: inconclusive
[35] [38] [40] [42] [47] [48] [55] controlled experiment: inconclusive controlled experiment: improvement
[51] [52] [53] [54] [57] [59] [60] pilot studies: improvement pilot studies: inconclusive
[63] industrial: improvement industrial: degradation
Note: a number of studies were classified as high-rigor studies; the results were inconclusive across all categories.

Our review 2011 [5] [28] [30] [32] [35] [38] [40] overall: improvement overall: inconclusive
[42] [47] [48] [49] [50] [55] [51] academic: no difference academic: improvement
[52] [53] [54] [56] [57] [58] [59] industrial: improvement industrial: degradation
[60] [61] [62] [63] waterfall: improvement waterfall: degradation

ITL: inconclusive (potential degrada-
tion)

ITL: inconclusive (potential improve-
ment)

Siniaalto [69] examined the findings of 15 studies, catego-
rized into Academic (A), Semi-Industrial (SI) and Industrial
(I) contexts. This review was conducted much earlier than
the other two and thus includes fewer studies than the other
two, which puts it in a less favourable position for obtaining
definite conclusions. Overall, TDD was found to result in an
improvement in external quality, but the results on productivity
are contradictory. In the subgroup analysis of external quality,
consistent improvements were found amongst the industrial
studies while the other two groups provided improvements
varying between significant to small or non-existent. In the
subgroup analysis on productivity, results from studies in the
academic and industrial subgroups ranged from no difference
in productivity to a negative impact whereas studies from
the semi-industrial subgroup reported a non-negative impact.
However, the validity and applicability of results must be
interpreted in light of the observation that in a substantial
number of studies with student subjects, task sizes were
small, different measurement metrics were used, and process
conformance was not monitored, hence the results could have
been confounded with the impact of other agile practices such
as pair programming.

Kollanus [70] conducted a review of 31 studies on the
quality and productivity constructs, categorized on the basis
of their experimental design into the Controlled Experiments
(CE), Case Studies (CS), and Other (O) subgroups. However,
conclusions were largely based on the results of the controlled
experiments and case studies subgroups. With regard to the
external quality construct, Kollanus claims that the empirical
evidence indicates ‘weak’ support for an improvement in
quality. The weakness arises from the results in the controlled
experiments subgroup being mixed, with roughly a third
of the studies having reported an improvement in quality.
In contrast, almost all of the case studies were found to
report an improvement in external quality. With regard to the

productivity construct, ‘moderate’ support was found for an
increase in development time. A majority of the case studies
were found to report a drop in productivity, whereas the results
from controlled experiments were mixed with approximately
half of the studies reporting a drop in productivity. The
review also observes that in several empirical studies the
improvement in quality coincided with a drop in productivity.
Following intuition given in one of the analyzed studies [52],
it was hypothesized that an improvement in quality and the
accompanying drop in productivity could be the result of
increased unit testing rather than an intrinsic trait of TDD.
Also, common traits that could affect review validity include
a poorly defined control group process, varying developer
experience and small task size.

Turhan et al. [65] conducted a review of 22 studies.
Similar to [70], the studies were divided into the Controlled
Experiments (CE), Pilot Studies (PS), and Industrial (I) sub-
groups. Additionally, all studies were classified as being either
high-rigor or low-rigor, according to developer experience,
process definition and conformance, and the scale of the
study (determined by the number of subjects and task size).
Overall, the empirical evidence suggests an improvement in
quality, but the results for productivity are mixed. In the
subgroup analysis on external quality, the larger share of the
industrial-use and pilot studies reported a positive effect on
quality while the results from controlled experiments were
inconclusive. However, when considering only high-rigor stud-
ies, the supporting evidence for an improvement in external
quality disappeared as the results were roughly mixed in each
subgroup, thus rendering the overall result inconclusive. With
regard to the productivity construct, the overall result was
inconclusive, as studies in the controlled experiments and
industrial subgroups reported an improvement and a drop
in productivity, respectively, whereas results from the pilot
studies subgroup were mixed. Turhan et al. also highlighted
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the two opposing lines of argument held with regard to the
impact of TDD on productivity, which are mentioned in the
discussion on productivity above.

The approach presented in this paper differs from the
previous reviews in a number of important aspects:

First, focus is placed on externally observable variables,
namely external quality (represented by defect density) and
developer productivity, both of which are directly measurable.
Internal code quality is not considered as there is no widely
accepted measure for it, while test coverage is not considered
as studies differ in the type of coverage (line, branch, method,
. . . ) they report.

Second, a quantitative approach was adopted to measure the
magnitude of the improvement/drop in each investigated em-
pirical study. This permits performance comparison amongst
the studies and allows us to gauge the size of the improvement
from applying TDD, thus making conclusions from the review
more meaningful.

Third, two major sub-grouping strategies were applied:
based on the experimental context (i.e., academic/industrial)
and based on the control group’s development process (Wa-
terfall/ITL). Together with the previous point, this approach
allows us to determine reasons that affect the performance in
empirical studies.

Fourth, potential moderator variables derived from the dis-
cussion of results were assessed to determine the extent of
their impact on the magnitude of the improvement.

Finally, a thorough analysis of rigor was conducted to assess
the universal applicability of the available empirical research
on TDD.

IX. CONCLUSION

This research intended to investigate the effectiveness of
TDD by applying meta-analytical techniques to previous
empirical research on the external quality and productivity
outcome constructs. Despite considerable differences amongst
the experiments, valuable insight can be gained from this
analysis. Overall, our analysis suggests that TDD results in
a small improvement in quality but results on productivity
are inconclusive. To gain deeper insight into the differing
levels of improvement observed for both outcome constructs,
we have also conducted subgroup analyses using two major
subgrouping strategies.

Under the Academic vs. Industrial subgrouping, much larger
improvements in quality were found in the Industrial experi-
ments, which may be attributed to higher developer experience
and much larger task sizes in those studies. Although the anal-
ysis on moderator variables identified a correlation with task
size, no concrete evidence was found relating the experience
level to the magnitude of the improvement in quality.

Under the Waterfall vs. ITL subgrouping, academic exper-
iments that employed a Waterfall-based testing process for
the control group reported larger improvements in quality;
this may be attributed by a significant increase in test effort
in the case of Waterfall process. Amongst the industrial
experiments, both subgroups achieved a similar level of quality
improvement which seems to indicate that the impact of the

difference in test effort is not as pronounced at large task
sizes. Given that only one experiment in our analysis was both
conducted in an industrial context and utilized an ITL-based
conventional development process, the conclusion regarding
industrial experiments needs to be verified in future research.

Under the Academic vs. Industrial subgrouping, larger drops
in productivity were generally observed in the Industrial
subgroup. This was rationalized in view of the impact of
higher developer experience: namely, that more experienced
developers put more emphasis and, consequently, devote more
time to TDD-specific activities such as testing and refactoring.
Although no correlation was found between the task size and
the magnitude of the improvement, it seems plausible that
extensions or delays in project duration occur in proportion to
the project size: small delays at small task sizes, larger delays
at large task sizes. Under the Waterfall vs. ITL subgrouping
strategy, in both the academic and industrial experiments larger
drops in productivity were found in the experiments that
utilized a Waterfall-based development process, which may be
attributed to a larger increase in test effort in their respective
experiments.

The internal or design quality construct and its impact on
external quality and productivity is a promising topic for future
research, however some conditions need to be satisfied. First,
the empirical setting should mandate the use of an ITL-based
traditional development process so that the influence of extra
test effort can be eliminated. Second, the task size should be
large so that any benefits in internal quality and, by extension,
on external quality and/or productivity become visible. Third
and, arguably, the most difficult condition to achieve is the use
of a common metric for internal quality.

As some experiments that coupled TDD with an initial
detailed design phase achieved high quality improvements,
the impact of this practice on TDD should be investigated
as well, together with the impact of task complexity on the
chosen outcome constructs. Again, a common metric for task
complexity is a prerequisite for this research.

We note a few key issues that the authors of future empirical
studies should be aware of when designing their experiments.
Adequate training should be given to the subjects so that
they can sufficiently grasp the TDD technique prior to the
actual experiment. Detailed information about training should
be provided as well, including specific areas as well as the
duration of the training. Industrial experiments should attempt
to record the long-term impacts of TDD as opposed to the
impacts on the initial development phase. More emphasis
should be placed on maintaining a high level of process
conformance. Finally, task complexity should be reported in
a more objective and standardized fashion so that it can be
easily compared across studies.
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[45] V. Kampenes, T. Dybå, J. Hannay, and D. Sjøberg, “A systematic review

of effect size in software engineering experiments,” Information and
Software Technology, vol. 49, no. 11–12, pp. 1073–1086, 2007.

[46] M. Borenstein, L. V. Hedges, J. P. Higgins, and H. R. Rothstein, “A
basic introduction to fixed-effect and random-effects models for meta-
analysis,” Research Synthesis Methods, vol. 1, no. 2, pp. 97–111, 2010.

[47] A. Gupta and P. Jalote, “An experimental evaluation of the effectiveness
and efficiency of the test driven development,” in Proc. of Intl. Symp. on
Empirical Soft. Eng. and Measurement ESEM 07, 2007, pp. 285–294.

[48] L. Madeyski, “Preliminary analysis of the effects of pair programming
and test-driven development on the external code quality,” in Software
Engineering: Evolution and Emerging Technologies, ser. Frontiers in
Artificial Intelligence and Applications. IOS Press, 2005, vol. 130, pp.
113–123.
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